IOWA STATE UNIVERSITY College of Engineering

Ames Microgrid Evaluation & Substation Consulting

sdmay25-02

Sean Carver, Bethany Danley, Thomas Edwards, Nathan Kallal, Mina Khalil, MacKenzie Woods

Team Members & Roles

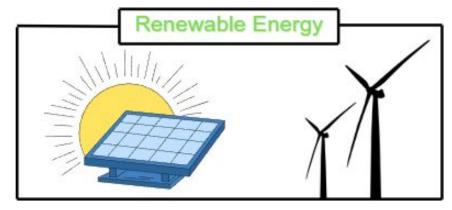
Sean Carver - Substation Team Mina Khalil - Substation Team MacKenzie Woods - Substation Team

Bethany Danley - Distribution Team Thomas Edwards - Distribution Team Nathan Kallal - Distribution Team

IOWA STATE UNIVERSITY

College of Engineering ₂

Project Overview


Client: Burns & McDonnell Faculty Advisor: Zhaoyu Wang User: ISU Utilities and Customers Project Goals:

- Modernize ISU's substation and microgrid infrastructure
- Enable scalable transmission and distribution systems

Key Objectives:

- Deliver a safe, reliable substation design package
- Model a resilient microgrid with renewable energy integration and contingency support

IOWA STATE UNIVERSITY

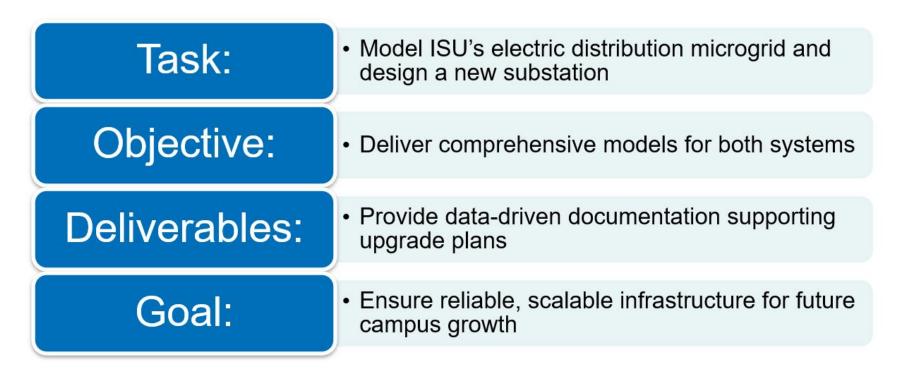
College of Engineering ₃

Client Information

Burns & McDonnell:

- Engineering, Procurement, & Construction (EPC) firm with strong presence in power generation and transmission
- Our clients work in the Substation division under Transmission & Distribution

1898 & Co.:


- Consulting arm of Burns & McDonnell
- Our client represents the Distribution Consulting team

IOWA STATE UNIVERSITY

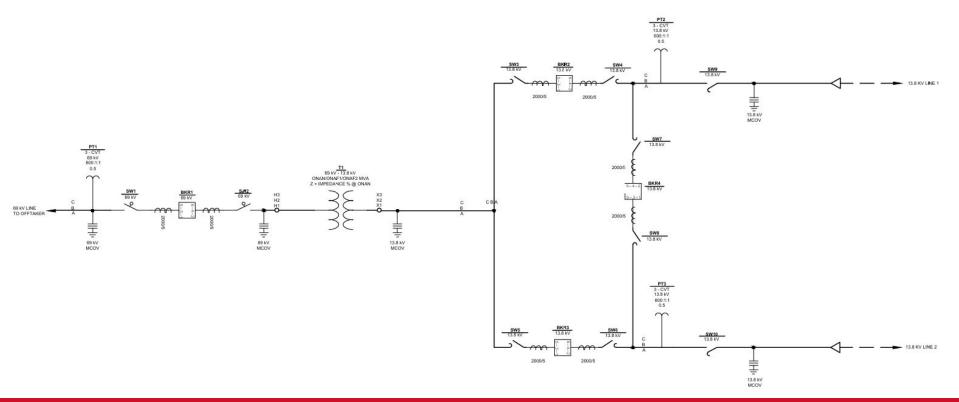
Problem Statement

IOWA STATE UNIVERSITY

Transmission Team Goals

- Design a 69kV -13.8kV substation
- Ensure safe layout and grounding
- Deliver clear documentation and modeling

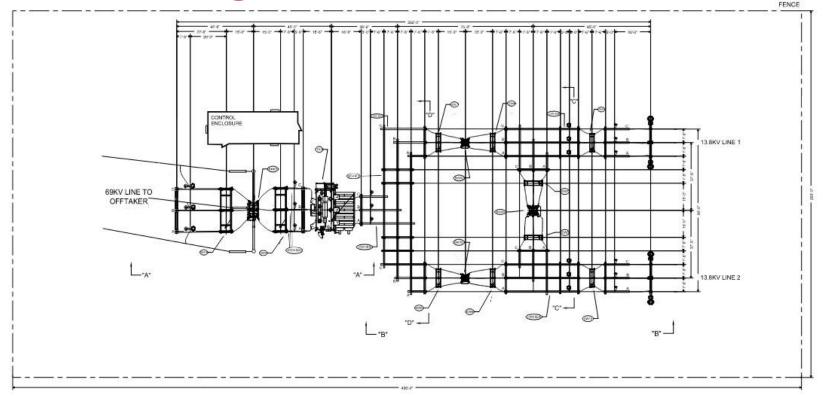
IOWA STATE UNIVERSITY


Construction One-Line (COL)

- Show equipment ratings, connections, grounding, and protection
- Guides contractors in installation and layout
- Ensures alignment with design standards and safety codes

IOWA STATE UNIVERSITY

COL Drawing Revision 5



IOWA STATE UNIVERSITY

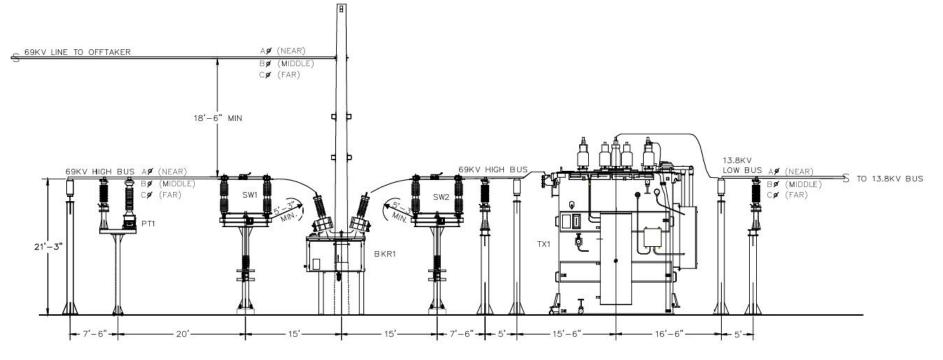
General Arrangement (GA)

- Displays physical layout of substation equipment
- Ensure safe spacing per IEEE & NEC standards
- Aids in maintenance access, crew safety, and future scalability
- Created using AutoCAD and Bluebeam for accurate scaling

GA Drawing Revision 5

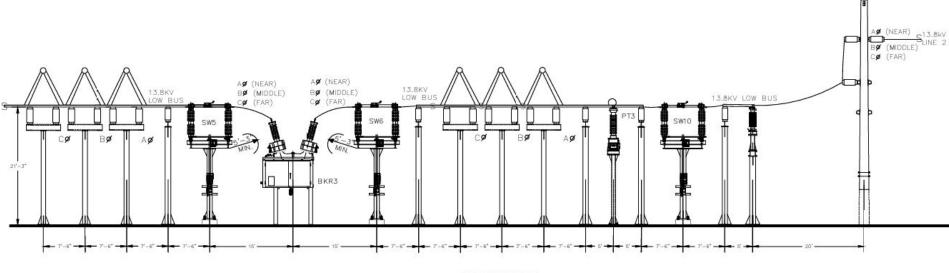
IOWA STATE UNIVERSITY

Elevations


- Illustrates vertical dimensions of substation structures
- Defines height clearances for buses, breakers, disconnects, etc.
- Verifies compliance with clearance and safety standards (IEEE 605)
- Supports coordination with rigid bus design and GA drawing

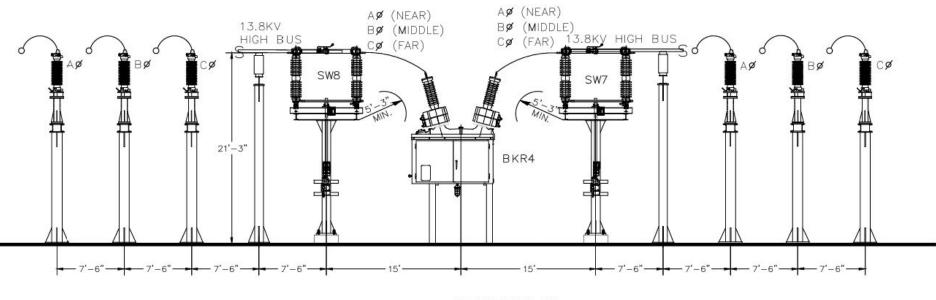
https://www.gwelectric.com/products/switchgear/?creative=&keyword=switch %20gear%20company&matchtype=p&network=o&device=c&msclkid=e1928 eb4224f18c27ba6e6ac165d521c&utm_source=bing&utm_medium=cpc&utm _campaign=Generic-Phrase&utm_term=switch%20gear%20company&utm_c ______ontent=switchgear

IOWA STATE UNIVERSITY


Elevation "A-A" Drawing Revision 6

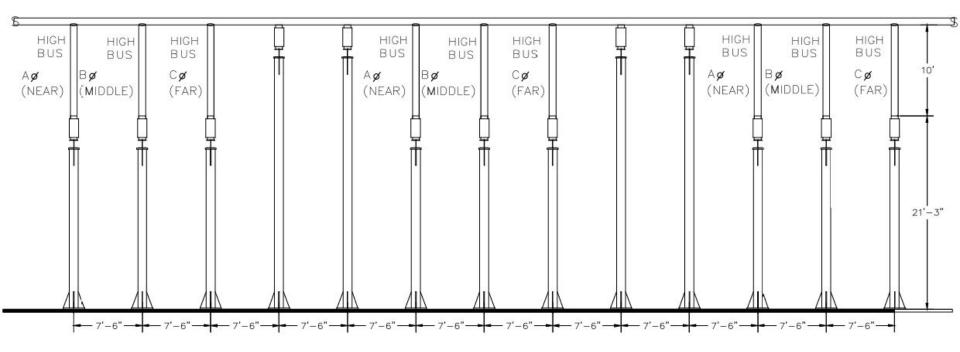
ELEVATION "A-A"

IOWA STATE UNIVERSITY


Elevation "B-B" Drawing Revision 5

ELEVATION "B-B"

IOWA STATE UNIVERSITY


Elevation "C-C" Drawing Revision 4

ELEVATION "C-C"

IOWA STATE UNIVERSITY

Elevation "D-D" Drawing Revision 4

ELEVATION "D-D"

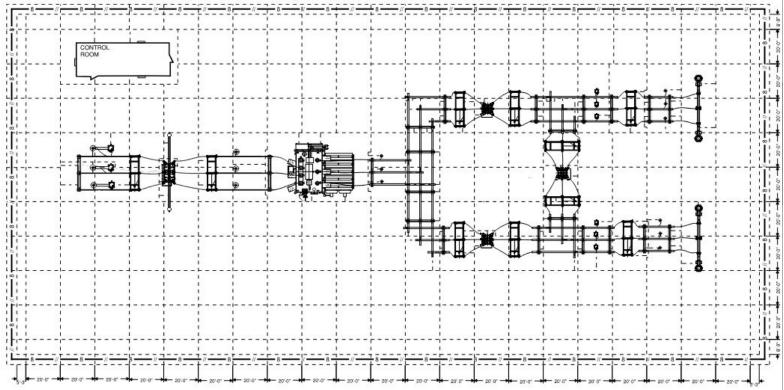
IOWA STATE UNIVERSITY

Clearance Checks

- Verified equipment spacing against IEEE 605 and NESC (IEEE C2-2023) standards
- Ensured safe working distances and arc flash protection zones
- Addressed horizontal & vertical clearances for maintenance and operation

IEEE SA STANDARDS ASSOCIATION

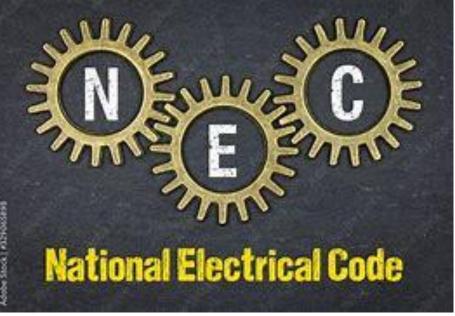
IOWA STATE UNIVERSITY


Grounding Plan

- Design in compliance with IEEE 80-2013 and IEEE 142-2007
- Ensured touch and step potential safety under fault conditions
- Ground grid layout supports equipment protection and personnel safety

College of Engineering 17

- Verified through scaled drawings and calculations in Bluebeam


Grounding Plan Drawing Revision 2

IOWA STATE UNIVERSITY

Cable and Conduits

- Identified routing paths between major equipment: transformers, breakers, relays, and control building
- Considered separation of power and control cables for safety and signal integrity
- Sized and specified conduits based on NEC guidelines

NEC National Electrical Code Stock Photo | Adobe Stock

IOWA STATE UNIVERSITY

Low-Level Bill of Materials (LLBOM)

 Created detailed component list for both substation and distribution systems

College of Engineering 20

- Included key equipment: transformers, circuit breakers, relays, grounding material, control panels, and cables
- Documented quantities
- Ensured compatibility with design layout and system ratings

IOWA STATE UNIVERSITY

LLBOM Drawing Revision 0

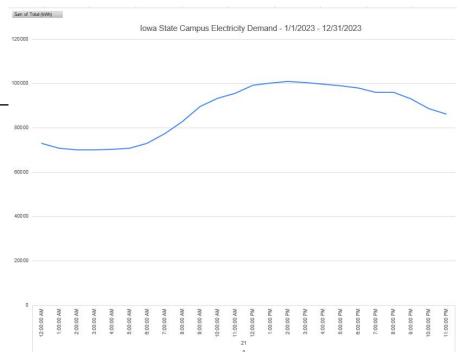
Bill of Materials (BOM)							
Stock Number 👻	Description -	Unit of Measure 👻	Quantity -	Unit Price -		Total Price 👻	Refrences -
1	69 kV Surge Arrester	Unit	6	\$ 2,000.00	\$	12,000.00	Link
2	13.8 kV Surge Arrester	Unit	9	\$ 1,000.00	\$	9,000.00	Link
3	69 kV Capacitive Voltage Transfomer (PT)	Unit	3	\$ 6,000.00	\$	18,000.00	Link
4	13.8 kV Capacitive Voltage Transfomer (PT)	Unit	6	\$ 5,500.00	\$	33,000.00	Link
5	69 kV - 13.8 kV Transfromer (T)	Unit	1	\$ 100,000.00	\$	100,000.00	Link
6	69 kV Disconnect Swtich (SW)	Unit	2	\$ 10,000.00	\$	20,000.00	Link
7	2000/5 Current Transfomer (CT)	Unit	24	\$ 500.00	\$	12,000.00	Link
8	69 kV Circuit Breaker (BKR)	Unit	1	\$ 50,000.00	\$	50,000.00	Link
9	13.8 kV Disconnet Switch (SW)	Unit	8	\$ 20,000.00	\$	160,000.00	Link
10	13.8 kV Circuit Breaker (BKR)	Unit	3	\$ 20,000.00	\$	60,000.00	Link
11	Motor Operators for 69 kV Swtiches	Unit	2	\$ 5,000.00	\$	10,000.00	Link
12	69 kV Insulator	Unit	6	\$ 300.00	\$	1,800.00	Link
13	13.8 kV Insulator	Unit	57	\$ 100.00	\$	5,700.00	Link
14	69 kV Tubular Bus	FT	80	\$ 50.00	\$	4,000.00	Link
15	13.8 kV Tubular Bus	FT	645	\$ 50.00	\$	32,250.00	Link
16	69 kV Strain Bus	FT	94	\$ 50.00	\$	4,700.00	Link
17	13.8 kV Strain Bus	FT	615	\$ 50.00	\$	30,750.00	Link
Total					\$	563,200.00	

IOWA STATE UNIVERSITY

Distribution Team Goals

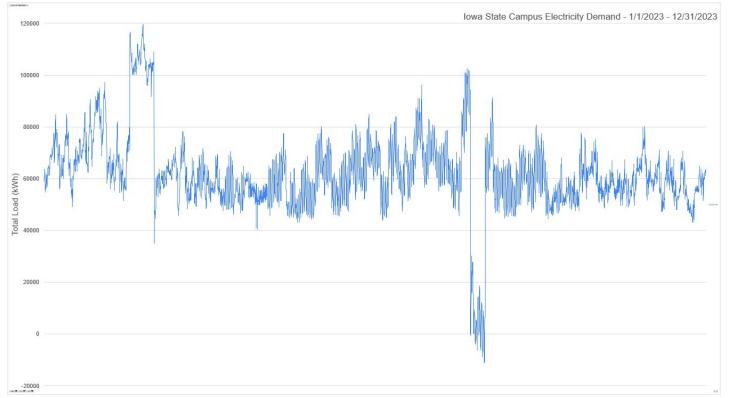
- Support Load Growth
- Ensure Reliable Power Delivery
- Integrate Distributed Energy Resources (DERs)
 - Solar Panels, Small Wind Turbines, Battery Storage
- Improve System Resilience
- Enhance Efficiency

WHAT HAPPENS WITH NO CHANGES IN THE FUTURE?



...more power plant fires & loss of power & loss of MONEY \$

IOWA STATE UNIVERSITY


Campus Load Profile Goals

- Data provided by the City of Ames
- Converted from Yearly Load –
 Daily BTU → Daily kWh
- Image shown : Yearly load
- Next slide: put in just a daily load to show the load shape for a typical day

IOWA STATE UNIVERSITY

Campus Load Profile

IOWA STATE UNIVERSITY

Distribution Planning Source

Power Sources:

Generated at Power Plant or purchased

Underground Distribution System:

 Medium voltage cables run through steel conduits and concrete duct banks

Substations:

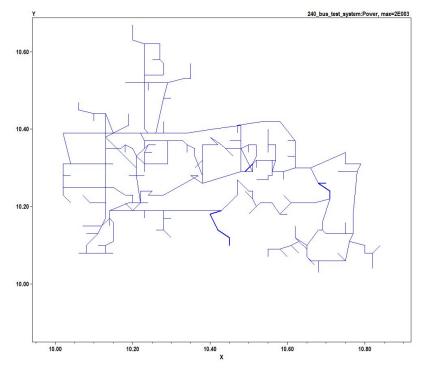
Includes transformers and/or switchgear

Voltage Distribution:

- Electricity supplied: 13,800V or 4,160V
- Over 500 building transformers to manage voltage
 - Reduce voltage to 480V, 208V, and/or 120V

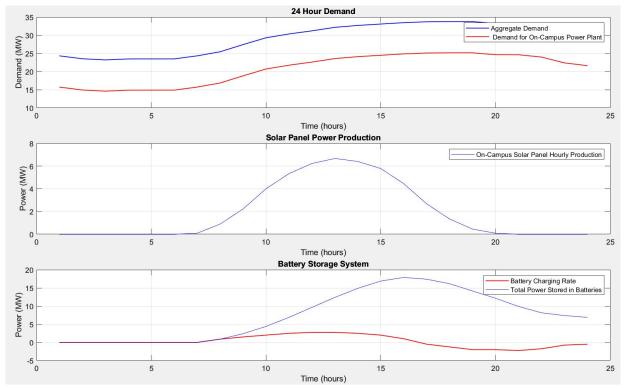
IOWA STATE UNIVERSITY

College of Engineering ₂₅

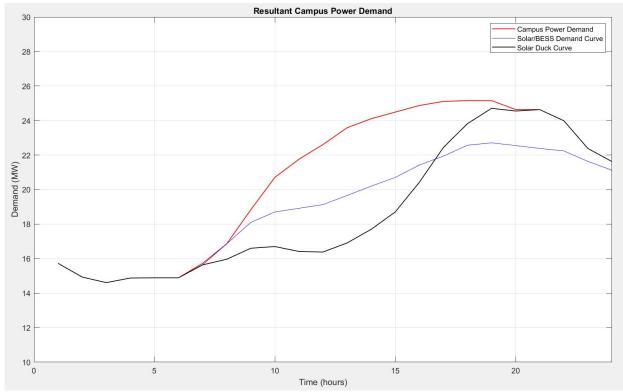

Conversion to OpenDSS

Plotting Load Points

- Google Earth used to determine relative locations
- Map location mirrors the loads found in the ISU Power Plant


Underground Distribution System

 Instructor-provided impedances for underground cables used (R + jX /mile values)


IOWA STATE UNIVERSITY

Average Campus Load

IOWA STATE UNIVERSITY

Average Campus Load

IOWA STATE UNIVERSITY

Conclusion

- Developed comprehensive models for ISU's substation and microgrid
- Ensured designs support safety, reliability, and scalability
- Integrated renewable energy and battery storage to enhance campus resilience

College of Engineering 29

- Aligned design with IEEE standards and client needs
- Delivered documentation and models to support future implementation

IOWA STATE UNIVERSITY

Questions?

CREATE AMAZING.

IOWA STATE UNIVERSITY